Atomic Collisions: Electron And Photon Projectiles

Earl Wadsworth McDaniel

If a high energy photon interacts with an electron, the interaction can be described by the Compton scattering relationship or by the 4-vector formulation of relativistic momentum. As a specific example, consider a 10GeV photon in a head-on collision with an electron at rest. If we apply the Compton formula, with $\lambda = h/p$ (deBroglie relationship) for a back-scattered photon where $\theta = 180^\circ$, this relationship can be expressed in terms of the quantity p_c. and rearranging gives. Since $p_c >> m_e c^2$, Conservation of energy then tells us that the electron energy after the collision is 9.999744 GeV. Electrons can lose energy in collisions with atomic electrons, leading to excitation and ionization of the medium. At low electron energies, radiative losses are negligible. The relative importance of ionization to excitation increases rapidly with the energy of the electron. These results were obtained using the default electron and photon settings in MCNP4B. Simulations for angles between 0’ and 100 include the stainless steel entrance window, while angles greater than 10’ had no stainless steel window. This is consistent with the experiment. Proton n-changing collisions and electron l-changing collisions are.

RAS, MNRAS 000, 1–7. Two-photon continuum of astrophysical nebulae 3. The electron density is calculated consistently depending on the He ionization degree (H is fully ionized while He is atomic due to the low energy of the laser). If He atoms are singly ionized then the electron density would be 10% higher than n_H. Our proposed test compares Case B predictions with observations of a nebula. It is possible that such processes as continuum pumping of the Lyman lines, or their escape from the cloud, would mitigate the Case B assumption and change the resulting emission.
Proton n-changing collisions and electron l-changing collisions are.

Two-photon continuum of astrophysical nebulae. The electron density is calculated consistently depending on the He ionization degree (H is fully ionized while He is atomic due to the low energy of the laser). If He atoms are singly ionized then the electron density would be 10% higher than nH. Our proposed test compares Case B predictions with observations of a nebula. It is possible that such processes as continuum pumping of the Lyman lines, or their escape from the cloud, would mitigate the Case B assumption and change the resulting emission.