This book was written to serve as a thorough teaching text, a comprehensive source of information, and a basic reference. It is intended for advanced students, professional engineers, and researchers. It emphasizes the fundamental concepts of analysis and design of prestressed concrete structures, providing the user with the essential knowledge and tools to deal with everyday design problems, while encouraging the necessary critical thinking to tackle more complex problems with confidence.

Prestressed concrete is one of the most reliable, durable, and widely used construction materials in building and bridge projects around the world. It has made significant contributions to the construction industry, the precast manufacturing industry, and the cement industry as a whole. It has led to an enormous array of structural applications, including buildings, bridges, nuclear power vessels, TV towers, and offshore drilling platforms.

Main Features:

This updated edition
- Integrates the provisions of the 2011 ACI Building Code in text and examples
- Offers an extensive treatment of bridge analysis and design according to the 2010 AASHTO LRFD Specifications
- Offers a rigorous treatment of fundamentals as applied to serviceability and ultimate strength limit states for bending, shear, composite action, compression and tension members, and introduces some simple optimum design approaches
- Includes a large number of logical design flow charts and design examples
- Covers the basics and provides examples of applications comparing both the 2011 ACI and 2010 AASHTO LRFD code approaches to bending, shear and torsion, prestress losses, and interface shear
- Presents a chapter on strut-and-tie modeling according to the ACI Building Code with examples of anchorage zone design
- Covers slenderness effects in prestressed concrete columns, and provides load-moment interaction diagrams for prestressed columns and poles
Offers a comprehensive treatment of the design of one- and two-way prestressed slabs
- Presents a unique treatment of prestressed tensile members by optimum design, including the design of wall for circular tanks
- Covers the time-step procedure to compute prestress losses and long-term deflections
- Offers a rigorous treatment of prestressed continuous beams
- Presents a comprehensive treatment of prestressed composite beams
- Contains more than four hundreds illustrations and photographs
- Covers sufficient material for a two-semester course on the subject
- Contains a large number of examples, an extensive updated bibliography, and an appendix with answers to study problems
- Uses consistent notation and consistent sign convention
- Uses dual units (US and SI) throughout for key equations and reference data

CONTENTS

Chapter 1 Principle and Methods of Prestressing
Chapter 2 Prestressing Materials: Steel and Concrete
Chapter 3 The Philosophy of Design
Chapter 4 Flexure: Working Stress Analysis and Design
Chapter 5 Flexure: Ultimate Strength Analysis and Design
Chapter 6 Design for Shear and Torsion
Chapter 7 Deflection Computation and Control
Chapter 8 Computation of Prestress Losses
Chapter 9 Analysis and Design of Composite Beams
Chapter 10 Continuous Beams and Indeterminate Structures
Chapter 11 Prestressed Concrete Slabs
Chapter 12 Analysis and Design of Tensile Members
Chapter 13 Analysis and Design of Compression Members
Chapter 14 Prestressed Concrete Bridges
Chapter 15 Strut-and-Tie Modeling
Appendix A List of Symbols
Appendix B Unit Conversions
Appendix C Typical Post-Tensioning Systems
Appendix D Answers to Selected Problems
Appendix E Typical Precast / Prestressed Beams
Index
1.4.1 Pretensioning 12
1.4.2 Posttensioning 17
1.4.3 Self-Stressing 22

1.5 Prestressing Systems 24

1.6 Particular Prestressing Techniques 25
1.6.1 External Prestressing 25
1.6.2 Circular Prestressing 27
1.6.3 Stage Stressing 28
1.6.4 Partial Prestressing 28

1.7 Prestressed Versus Reinforced Concrete 29
1.8 Example 32
1.9 Looking Ahead 37

1.10 Suggested Additional Reading 38
References 38
Problems 42

Chapter 2 Prestressing Materials: Steel and Concrete 45
2.1 Reinforcing Steels 45
2.2 Prestressing Steels 49
 2.2.1 Types of Prestressing Tendons 50
 2.2.2 Production Process 53
 2.2.3 Mechanical and Stress-Strain Properties 55
 2.2.4 Relaxation 58
 2.2.5 Effects of Temperature 62
 2.2.6 Fatigue 64
 2.2.7 Corrosion 68
2.3 Concrete 70
 2.3.1 Composition 70
 2.3.2 Stress-Strain Curve 71
 2.3.3 Mechanical Properties 74
 2.3.4 Shrinkage 78
 2.3.5 Creep 81
 2.3.6 Fatigue 85
 2.3.7 Effects of Temperature 85
 2.3.8 Steam Curing 86
2.4 Constitutive Modeling 87
 2.4.1 Stress-Strain Curve of Concrete in Compression 87
 2.4.2 Stress-Strain Curve of Reinforcing Steel in Tension 90
 2.4.3 Stress-Strain Curve of Prestressing Steels in Tension 93
2.5 Concluding Remarks 96
References 96
Problems 99

Chapter 3 The Philosophy of Design 103
3.1 What is Design? 103
3.2 Analysis or Investigation Versus Design 104
3.3 Design Objectives 104
3.4 Limit State Design Philosophy 105
3.5 Common Design Approaches 107
 3.5.1 WSD (or ASD) 109
 3.5.2 USD, SD, or LRFD 110
 3.5.3 Plastic Design, Limit Design, and Performance Based Plastic Design 113
 3.5.4 Nonlinear Design, Probabilistic Design 113
3.6 Design Codes
3.7 Loads
3.8 Allowable Stresses
3.8.1 Concrete
3.8.2 Prestressing Steel
3.8.3 Reinforcing Steel
3.9 Load and Strength Reduction (or Resistance) Factors
3.9.1 Load Factors
3.9.2 Strength Reduction or Resistance Factors
3.10 ACI Code Viewpoint Related to Prestressed and Partially Prestressed Concrete
3.10.1 Class Definition and Related Serviceability Design Requirements
3.10.2 Tension Controlled and Compression Controlled Sections
3.11 Some Design Comparisons: Reinforced Versus Prestressed Concrete
3.11.1 Practical Design Approach
3.11.2 C-Force and C-Line
3.11.3 Characteristic Response of RC, PC, and PPC in Bending in the Elastic Range of Behavior
3.11.4 Curvature Computation
3.11.5 Load Balancing Feature of Prestressing
3.12 Detailing of Reinforcement
3.13 Prestress Losses in Preliminary Design
3.14 Concluding Remarks

References

Chapter 4 Flexure: Working Stress Analysis and Design
4.1 Analysis Versus Design
4.2 Concepts of Prestressing
4.3 Notations for Flexure
4.3.1 Example: Computation of Sectional Properties
4.4 Sign Convention
4.4.1 Examples
4.5 Loading Stages
4.6 Allowable Stresses
4.7 Mathematical Basis for Flexural Analysis
4.8 Geometric Interpretation of the Stress Inequality Conditions
4.9 Example: Analysis and Design of a Prestressed Beam
4.9.1 Simply Supported T Beam
4.9.2 Simply Supported T Beam with Single Cantilever on One Side
4.10 Use of Stress Inequality Conditions for Design of Section Properties
4.11 Examples of Use of Minimum Section Properties
4.11.1 Minimum Weight Slab
4.11.2 Minimum Weight Beam
4.11.3 Selection of Optimum Beam from a Given Set of Beams
4.12 Limiting the Eccentricity along the Span
4.12.1 Limit Kern Versus Central Kern
4.12.2 Steel Envelopes and Limit Zone
4.12.2.1 General Procedure
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12.3</td>
<td>Example</td>
</tr>
<tr>
<td>4.12.4</td>
<td>Limit Location of Draping Section</td>
</tr>
<tr>
<td>4.13</td>
<td>Some Preliminary Design Tips</td>
</tr>
<tr>
<td>4.14</td>
<td>Cracking Moment</td>
</tr>
<tr>
<td>4.15</td>
<td>Limiting the Amount of Prestressed Reinforcement</td>
</tr>
<tr>
<td>4.16</td>
<td>End Zone: Pretensioned Members</td>
</tr>
<tr>
<td>4.16.1</td>
<td>Transfer Length and Development Length</td>
</tr>
<tr>
<td>4.16.2</td>
<td>End Zone Reinforcement</td>
</tr>
<tr>
<td>4.17</td>
<td>End Zone: Posttensioned Members</td>
</tr>
<tr>
<td>4.17.1</td>
<td>Analysis of Stresses</td>
</tr>
<tr>
<td>4.17.2</td>
<td>Anchorage Zone Design</td>
</tr>
<tr>
<td>4.17.3</td>
<td>Simplified ACI Procedure for Rectangular Sections</td>
</tr>
<tr>
<td>4.17.3.1</td>
<td>Example</td>
</tr>
<tr>
<td>4.17.4</td>
<td>Example: Design of End Zone Reinforcement by Elastic Analysis</td>
</tr>
<tr>
<td>4.18</td>
<td>Extension of Feasibility Domain to Other Limit States</td>
</tr>
<tr>
<td>4.18.1</td>
<td>Constraint for Ultimate Strength Design in Bending</td>
</tr>
<tr>
<td>4.18.1.1</td>
<td>Example: Nominal Bending Resistance Constraint</td>
</tr>
<tr>
<td>4.18.2</td>
<td>Constraint to Limit Camber or Deflection</td>
</tr>
<tr>
<td>4.18.2.1</td>
<td>Example: Deflection Constraint</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 5 Flexure: Ultimate Strength Analysis and Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Load-Deflection Response</td>
</tr>
<tr>
<td>5.1.1</td>
<td>RC Versus PC at Ultimate</td>
</tr>
<tr>
<td>5.2</td>
<td>Terminology</td>
</tr>
<tr>
<td>5.3</td>
<td>Flexural Types of Failures</td>
</tr>
<tr>
<td>5.4</td>
<td>Special Notation</td>
</tr>
<tr>
<td>5.5</td>
<td>General Criteria for Ultimate Strength Design of Bending Members</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Design Criteria</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Minimum Reinforcement or Minimum Moment Resistance: Code Recommendations</td>
</tr>
<tr>
<td>5.5.3</td>
<td>ACI Code Provisions for Tension-Controlled, Transition, and Compression-Controlled Sections at Increasing Levels of Reinforcement</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Net Tensile Strain and σ/Δε Ratio</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Amendments Adopted in this Text</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Recommendation on Maximum Reinforcement</td>
</tr>
<tr>
<td>5.6</td>
<td>Background for Analysis of Sections at Ultimate</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Objective – Assumptions</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Satisfying Equilibrium</td>
</tr>
<tr>
<td>5.7</td>
<td>Nominal Bending Resistance: Mathematical Formulation for Rectangular Section or Rectangular Section Behavior – Tension-Controlled</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Force Equilibrium</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Moment Equilibrium</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Solution Procedure</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Simplified Approximate Analysis</td>
</tr>
<tr>
<td>5.8</td>
<td>Stress in Prestressing Steel at Nominal Bending Resistance –</td>
</tr>
</tbody>
</table>
5.9 Example: Nominal Bending Resistance of a Rectangular Section
5.9.1 Partially Prestressed Section – Simplified Approximation
5.9.2 Partially Prestressed Section – Using ACI Code Equation for f_{ps}
5.9.3 Fully Prestressed Section
5.9.4 Unbonded Tendons
5.10 Nominal Bending Resistance: Mathematical Formulation for T-Section Behavior of Flanged Section
5.10.1 Condition for T-Section Behavior
5.10.2 Fully Prestressed Section
5.10.3 Partially Prestressed Section
5.10.4 Remark
5.11 Example: Nominal Bending Resistance of T-Section
5.11.1 Partially Prestressed Section
5.11.2 Fully Prestressed Section
5.11.3 Unbonded Tendons
5.11.4 Odd Case
5.12 Stress in Prestressing Steel at Nominal Bending Resistance – AASHTO LRFD Code
5.12.1 Members with Bonded Prestressing Tendons
5.12.2 Members with Unbonded Prestressing Tendons
5.13 Nominal Bending Resistance: AASHTO LRFD Code
5.13.1 Equilibrium Equations for Rectangular and Flanged Sections
5.13.2 Solution for Members with Bonded Tendons
5.13.3 Solution for Members with Unbonded Tendons
5.13.4 Solution for Members with Both Bonded and Unbonded Tendons
5.13.5 Example: PPC (Partially Prestressed Concrete) Rectangular Section by AASHTO
5.13.6 Example: PPC (Partially Prestressed Concrete) T-Section with Bonded Tendons (AASHTO)
5.14 Transition between Tension-Controlled and Compression-Controlled Section in Bending
5.14.1 ϕ Factor for Bending According to AASHTO
5.14.2 Strategy for Design
5.15 Concept of Reinforcing Index
5.15.1 Definitions
5.15.2 Meaning of ω_e
5.15.3 Useful Relationships
5.15.4 Relationship between Reinforcement Ratio, Reinforcing Index, and c/d_e
5.16 Justification for the Definition of ω_e and d_e and their Relation to the Limitations on Levels of Reinforcement and Moment Redistribution
5.16.1 Reinforced Concrete
5.16.2 Prestressed Concrete
5.16.3 Partially Prestressed Concrete
5.17 Derivation of Minimum Reinforcement Ratio, Minimum
Reinforcing Index, or Minimum c/d_e 293
5.17.1 Approximation: Minimum Reinforcement Ratio for Prestressed Concrete 293
5.17.2 Minimum Reinforcing Index for RC, PC, and PPC 294
5.17.3 Minimum c/d_e Ratio for RC, PC, and PPC Rectangular Sections 296

5.18 Satisfying Ultimate Strength Design Requirements 298
5.18.1 Basis for Ultimate Strength Design (USD) 298
5.18.2 Possible Remedies to Satisfy Inadequate Nominal Bending Resistance 299

5.19 Example: Analysis or Investigation Checking for All Ultimate Strength Design Criteria 300

5.20 Reinforcement Design for Ultimate Strength 302
5.20.1 Example: Reinforcement Design for Nominal Resistance – Rectangular Section 304
5.20.2 Example: Reinforcement Design for Nominal Resistance – T Section 308

5.21 Composite Beams 310

5.22 Continuous Beams and Moment Redistribution 310

5.23 Author’s Recommendations for the Design of RC, PC, and PPC Beams at Ultimate 311
5.23.1 Using e_{ne} and d_e instead of e_t and d_t 311
5.23.1.1 Example of Error in Using the Net Tensile Strain in Extreme Layer of Reinforcement 312
5.23.2 T-Section Behavior 313
5.23.3 Stress f_{pu} in Bonded Tendons at Ultimate 314
5.23.4 Stress f_{pu} in Unbonded Prestressing Tendons at Ultimate 314

5.24 Additional Design Examples Based on USD 318
5.24.1 Example 1: Analysis with Unbonded Tendons Illustrating Eq. (5.103) 319
5.24.2 Example 2: Given A_{ps}, Design for A_s Based on USD – Unbonded Tendons 321
5.24.3 Example 3: Given A_s, Design for A_{ps} Based on USD – Unbonded Tendons 323
5.24.4 Example 4: Given A_s, Design for A_{ps} Based on USD – Bonded Tendons 323

5.25 Concluding Remarks 324

References 324
Problems 326

Chapter 6 Design for Shear and Torsion 331
6.1 Introduction 331
6.2 Shear Design 332
6.3 Prestressed Versus Reinforced Concrete in Shear 332
6.4 Diagonal Tension in Uncracked Sections 334
6.5 Shear Stresses in Uncracked Sections 338
6.6 Shear Cracking Behavior 340
6.7 Shear Reinforcement after Cracking 343
6.8 ACI Code Design Criteria for Shear 347
6.8.1 Basic Approach 347
6.8.2 Shear Strength Provided by Concrete 348
6.8.2.1 Conservative Design Method to Estimate V_c or V_c 349
6.8.2.2 Elaborate Design Method to Estimate v_c or V_c
350
6.8.3 Required Area of Shear Reinforcement
353
6.8.4 Limitations and Special Cases
354
6.8.5 Critical Sections for Shear
356
6.9 Design Expedients
357
6.10 Example: Design of Shear Reinforcement (ACI Code)
360
6.10.1 Conservative Method to Determine v_c
361
6.10.2 Elaborate Method to Determine v_c
363
6.10.3 Design for Increased Live Load: Partially Prestressed Beam
367
6.11 Derivation of Concrete Nominal Shear Strength Equations (ACI Code)
367
6.12 AASHTO General Procedure for Shear Design
371
6.12.1 General Sectional Procedure for Shear Design
373
6.12.2 Special Considerations
380
6.12.3 Example: Shear Design by AASHTO LRFD Code (Using Modified Compression Field Theory)
384
6.12.4 Simplified Shear Design Procedure by AASHTO for Prestressed and Non-Prestressed Sections
388
6.12.5 Example: Using AASHTO Simplified Shear Design Procedure
391
6.13 Torsion and Torsion Design
392
6.14 Behavior under Pure Torsion
393
6.15 Background to Stress Analysis and Design for Torsion
396
6.15.1 Torsional Stresses
396
6.15.2 Torsional Cracking Strength
398
6.15.3 Torsional Resistance after Cracking
399
6.15.4 Combined Loading
402
6.15.5 Design Theories for Torsion and Code Related Approaches
404
6.16 Design for Torsion by ACI Code
406
6.16.1 Definition of Section Parameters
406
6.16.2 Basic Assumptions and Design Strategy
407
6.16.3 Threshold Limit for Consideration of Torsion in Design – $(T_u)_{min}$
408
6.16.4 Critical Section for Torsion
409
6.16.5 Maximum Allowable Torsional Moment Strength – Upper Limit
409
6.16.6 Transverse Reinforcement Design
411
6.16.7 Longitudinal Torsion Reinforcement
412
6.16.8 Combining Shear and Torsion Reinforcement
413
6.16.9 Minimum Torsion Reinforcement
413
6.16.10 Spacing and Detailing
414
6.16.11 Type of Torsion Reinforcement
414
6.16.12 Design Steps for Combined Torsion and Shear
416
6.17 Example: Torsion Design of a Prestressed Beam
416
6.18 Shear and Torsion in Partially Prestressed Members
419
6.19 Importance of Transverse Reinforcement
420
References
421
Problems
423

Chapter 7 Deflection Computation and Control 429
7.1 Serviceability 429
7.2 Deflection: Types and Characteristics 430
 7.2.1 Terminology / Notation 430
 7.2.2 Key Variables Affecting Deflections in a Given Beam 431
7.3 Theoretical Deflection Derivations 432
 7.3.1 Moment-Area Theorems 434
 7.3.2 Example 436
7.4 Short-Term Deflections in Prestressed Members 437
 7.4.1 Uncracked Members 437
 7.4.2 Cracked Members 440
7.5 Background to Understanding Long-Term Deflection 446
7.6 Additional Long-Term Deflection: Simplified Prediction Methods 448
 7.6.1 Additional Long-Term Deflection Using ACI Code Multiplier 450
 7.6.2 Additional Long-Term Deflection Using Branson’s Multipliers 450
 7.6.3 Additional Long-Term Deflection Using Martin’s Multiplier 451
 7.6.4 Additional Long-Term Deflection: Heuristic or “Rule of Thumb” Method 452
 7.6.5 Discussion 452
7.7 Deflection Limitations 453
7.8 Strategy for Checking Deflection Criteria 455
7.9 Example: Deflection of Uncracked or Cracked Prestressed Beam 456
 7.9.1 Fully Prestressed Beam – Uncracked under Full Service Load 457
 7.9.2 Partially Prestressed Beam 459
7.10 Integrating the Modulus of Concrete into Time-Dependent Deflection Calculations 462
 7.10.1 Age-Adjusted Effective Modulus 462
 7.10.2 Equivalent Modulus 463
 7.10.3 Equivalent Cyclic-Dependent Modulus 464
7.11 Long-Term Deflection by Incremental Time Steps 464
 7.11.1 Theoretical Approach 464
 7.11.2 Simplified C-Line Approach 465
7.12 Example: Time-Dependent Deflection Using the C-Line Approach and Comparisons 472
 7.12.1 Standard Precast Prestressed Double-T Beam 472
 7.12.2 Comparison of Long-Term Deflections Predicted from Different Methods 477
7.13 Time-Dependent Deflection Using C-Line Approach for Example 7.9.1 479
7.14 Deflection Control 481
7.15 Effective Moment of Inertia - Revisited 482
7.16 Concluding Remarks 484
 References 485
 Problems 486

Chapter 8 Computation of Prestress Losses 491
8.1 Sources of Loss of Prestress 491
8.2 Total Losses in Pretensioned Members 494
8.3 Total Losses in Posttensioned Members 497
8.4 Methods for Estimating Prestress Losses

8.5 Lump Sum Estimate of Total Losses
 8.5.1 Background
 8.5.2 Lump Sum Estimate of Time-Dependent Prestress Losses: AASHTO LRFD
 8.5.2.1 Non Composite Members
 8.5.2.2 Composite Members
 8.5.2.3 Refined Estimate of Time Dependent Losses

8.6 Separate Lump Sum Estimate of Each Time-Dependent Loss
 – AASHTO LRFD
 8.6.1 Total Loss Due to Shrinkage
 8.6.2 Total Loss Due to Creep
 8.6.3 Total Loss Due to Relaxation
 8.6.4 Losses for Deflection Calculations
 8.6.5 Example: Losses Due to Relaxation

8.7 Loss Due to Elastic Shortening
 8.7.1 Pretensioned Construction: Approximate Method and AASHTO LRFD
 8.7.2 Pretensioned Construction: Accurate Method
 8.7.3 Posttensioned Construction: AASHTO LRFD
 8.7.4 Posttensioned Construction: Accurate Method

8.8 Example: Elastic Shortening Loss in Pretensioned Beam

8.9 Example: Computation of Prestress Losses for a Pretensioned Beam by Lump Sum Estimates of Total and Separate Losses
 8.9.1 Lump Sum Estimate of Total Losses by AASHTO LRFD
 8.9.2 Lump Sum Estimates of Separate Losses by AASHTO LRFD

8.10 Example: Typical Stress History in Strands

8.11 Time-Dependent Loss Due to Steel Relaxation

8.12 Time-Dependent Loss Due to Shrinkage
 8.12.1 Shrinkage Strain Recommended in AASHTO LRFD
 8.12.2 Example: Shrinkage Loss Assuming No Other Loss Occurs

8.13 Time-Dependent Loss Due to Creep
 8.13.1 Creep Coefficient Recommended in AASHTO LRFD
 8.13.2 Example: Creep Loss Assuming No Other Loss Occurs

8.14 Prestress Losses by Time-Step Method

8.15 Example: Computation of Prestress Losses for a Pretensioned Beam by Time-Step Method

8.16 Loss Due to Friction
 8.16.1 Analytical Formulation
 8.16.2 Graphical Representation
 8.16.3 Example: Computation of Losses Due to Friction

8.17 Loss Due to Anchorage Set
 8.17.1 Concept of Area Lost or Equivalent Energy Lost
 8.17.2 Example: Loss Due to Anchorage Set

8.18 Loss Due to Anchorage Set in Short Beams
 8.18.1 Example: Anchorage Set Loss in a Short Beam

8.19 Concluding Remarks
 References
 Problems
Chapter 9 Analysis and Design of Composite Beams 565
9.1 Types of Prestressed Concrete Composite Beams 565
9.2 Advantages of Composite Construction 566
9.3 Particular Design Aspects of Prestressed Composite Beams 568
9.4 Loading Stages, Shored Versus Unshored Beams 569
9.5 Effective and Transformed Flange Width and Section Properties 570
9.5.1 Effective Flange Width 570
9.5.2 Transformed Flange Width 572
9.5.3 Cross Section Properties of Composite Section 574
9.6 Interface Shear or Horizontal Shear 575
9.6.1 Evaluation of Horizontal Shear 575
9.6.2 ACI Code Provisions for Horizontal Shear at Contact Surface 578
9.6.2.1 Shear Transfer Resistance 578
9.6.2.2 Shear Friction Reinforcement: Sectional Design 580
9.6.2.3 Shear Friction Reinforcement: Segment Design 582
9.7 Flexure: Working Stress Analysis and Design 585
9.7.1 Extreme Loadings 585
9.7.2 Stress Inequality Conditions 586
9.7.3 Feasible Domain, Limit Kern, Steel Envelopes 590
9.7.4 Cracking Moment 591
9.7.5 Minimum Section Moduli of Composite Sections 591
9.7.6 Example: Selection of Optimum Beam from a Given Set of Beams 594
9.8 Flexure: Ultimate Strength Analysis and Design 597
9.9 Designing for Shear and Torsion 599
9.10 Deflections 600
9.10.1 Sequence of Computations 601
9.11 Example: Prestressed Composite Floor Beam 602
9.12 AASHTO LRFD Provisions on Interface Shear Reinforcement at Contact Surface of Composite Beams 616
9.12.1 General Design Approach 617
9.12.2 Factored Interface Shear Force per Unit Length of Interface, V_{ah} 618
9.12.3 Nominal Interface Shear Resistance per Unit Length, V_{nh} 619
9.12.4 Minimum Interface Shear Reinforcement 621
9.12.5 Practical Recommendation 622
9.12.6 Example 623
References 625
Problems 626

Chapter 10 Continuous Beams and Indeterminate Structures 629
10.1 Advantages and Forms 629
10.2 Necessary Analytical Background 632
10.3 Sign Convention and Special Notation 633
10.4 Secondary Moments and Zero-Load-C (ZLC) Line 634
10.5 Example: Secondary Moments and Concordancy Property 637
10.6 Linear Transformation 640
10.7 Concordant Tendons 641
10.8 External Loads Equivalent to Prestressing 643
10.8.1 Concept of Equivalent Load 644
10.8.2 Application of Equivalent Load to a Continuous Tendon

10.8.3 Example: Equivalent Load

10.8.4 Example: Equivalent Load for Circular and Parabolic Tendon Profile

10.9 Prestressing Moment and Elastic Stresses

10.9.1 Moment Due to Prestressing, M_F

10.9.2 Example: Prestressed Moments by the Equivalent Load Method

10.9.3 Elastic Stresses in a Continuous Beam

10.10 Design Aids

10.11 Working Stress Analysis and Design

10.11.1 Assumptions

10.11.2 Analysis or Investigation

10.11.3 Design

10.12 Limit Kern and Limit Zone

10.13 Load-Balancing Method

10.13.1 General Approach

10.13.2 Load Balancing of Edge-Supported Slabs

10.13.3 Example: Load Balancing of an Edge-Supported Slab

10.13.4 Load Balancing of Frames

10.13.5 Limitations of Load Balancing

10.14 Ultimate Strength Analysis

10.14.1 Treatment of Secondary Moments

10.14.2 Limit Analysis

10.14.3 Redistribution of Moments

10.14.4 Secondary Moment and Moment Redistribution

10.14.5 Prediction of Plastic Rotation in PPC Beams

10.15 Example: Design of a Prestressed Continuous Beam

10.16 Useful Design Aids for Continuous Beams

References

Problems

Chapter 11 Prestressed Concrete Slabs

11.1 Slab Systems

11.1.1 General Design Approach

11.2 Unbonded Tendons in One- and Two-Way Slab Systems

11.2.1 Stress at Ultimate in Unbonded Tendons

11.3 Design of One-Way Slabs

11.3.1 Design Procedure

11.3.2 Minimum Bonded Reinforcement

11.3.3 Temperature and Shrinkage Reinforcement

11.3.4 Additional Design Notes

11.3.5 Deflection

11.4 Example: Design of a Five-Span Continuous One-Way Slab Prestressed with Unbonded Tendons

11.5 Characteristics of Two-Way Flat Slabs

11.5.1 Load Path

11.5.2 Reinforcement Layout

11.5.3 Theoretical Distribution of Moments

11.5.4 Special Notations

11.6 Analysis and Design Methods

11.6.1 Analysis

References

Problems
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6.2</td>
<td>Design</td>
<td>734</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Load Balancing</td>
<td>734</td>
</tr>
<tr>
<td>11.7</td>
<td>Analysis by the Equivalent-Frame Method</td>
<td>736</td>
</tr>
<tr>
<td>11.7.1</td>
<td>General Approach</td>
<td>737</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Computation of Moments and Shear Forces</td>
<td>737</td>
</tr>
<tr>
<td>11.8</td>
<td>Design Distribution of Moments and Tendons</td>
<td>740</td>
</tr>
<tr>
<td>11.9</td>
<td>Preliminary Design Information and Design Tips</td>
<td>743</td>
</tr>
<tr>
<td>11.9.1</td>
<td>Slab Thickness and Reinforcement Cover for Fire Safety</td>
<td>744</td>
</tr>
<tr>
<td>11.9.2</td>
<td>Punching Shear</td>
<td>744</td>
</tr>
<tr>
<td>11.9.3</td>
<td>Average Prestress</td>
<td>744</td>
</tr>
<tr>
<td>11.9.4</td>
<td>Nonprestressed Reinforcement</td>
<td>745</td>
</tr>
<tr>
<td>11.9.5</td>
<td>Deflection</td>
<td>745</td>
</tr>
<tr>
<td>11.10</td>
<td>Prestressed Flat Plates: Design for Flexure</td>
<td>745</td>
</tr>
<tr>
<td>11.10.1</td>
<td>Working Stress Design</td>
<td>745</td>
</tr>
<tr>
<td>11.10.2</td>
<td>Allowable Stresses</td>
<td>746</td>
</tr>
<tr>
<td>11.10.3</td>
<td>Ultimate Strength Design</td>
<td>747</td>
</tr>
<tr>
<td>11.10.4</td>
<td>Minimum Bonded Reinforcement</td>
<td>747</td>
</tr>
<tr>
<td>11.10.5</td>
<td>Integrity Tendons and Other Reinforcement</td>
<td>749</td>
</tr>
<tr>
<td>11.10.6</td>
<td>Nominal to Cracking Moment Condition</td>
<td>750</td>
</tr>
<tr>
<td>11.11</td>
<td>Flat Plates: Design for Shear</td>
<td>750</td>
</tr>
<tr>
<td>11.11.1</td>
<td>Concrete Shear Capacity</td>
<td>750</td>
</tr>
<tr>
<td>11.11.2</td>
<td>Transfer Moment Between Columns and Slab</td>
<td>753</td>
</tr>
<tr>
<td>11.11.3</td>
<td>Maximum Shear Stress in Critical Section</td>
<td>756</td>
</tr>
<tr>
<td>11.11.4</td>
<td>Design Tips</td>
<td>761</td>
</tr>
<tr>
<td>11.11.5</td>
<td>Shear Reinforcement</td>
<td>761</td>
</tr>
<tr>
<td>11.12</td>
<td>Deflection of Flat Plates</td>
<td>764</td>
</tr>
<tr>
<td>11.12.1</td>
<td>Elastic Solution</td>
<td>764</td>
</tr>
<tr>
<td>11.12.2</td>
<td>Equivalent Frame Approach</td>
<td>768</td>
</tr>
<tr>
<td>11.13</td>
<td>Summary of Design Steps for Two-Way Prestressed Flat Plates</td>
<td>771</td>
</tr>
<tr>
<td>11.14</td>
<td>Example: Design of a Two-Way Prestressed Flat Plate</td>
<td>772</td>
</tr>
<tr>
<td>11.15</td>
<td>Fiber Reinforcement for Punching Shear</td>
<td>790</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>791</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>794</td>
</tr>
</tbody>
</table>

Chapter 12
Analysis and Design of Tensile Members
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Types of Tension Members</td>
<td>797</td>
</tr>
<tr>
<td>12.2</td>
<td>Advantages of Prestressed Concrete Tension Members</td>
<td>799</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Example: Relative Deformation of Tension Members</td>
<td>800</td>
</tr>
<tr>
<td>12.3</td>
<td>Behavior of Prestressed Concrete Tension Members</td>
<td>801</td>
</tr>
<tr>
<td>12.4</td>
<td>Analysis of Tension Members</td>
<td>805</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Service Stresses, Decompression, Cracking and Ultimate Load</td>
<td>805</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Short- and Long-Term Deformations in Linear Members</td>
<td>809</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Example: Analysis-Investigation of a Tension Member</td>
<td>811</td>
</tr>
<tr>
<td>12.5</td>
<td>Optimum Design of Tension Members</td>
<td>814</td>
</tr>
<tr>
<td>12.5.1</td>
<td>Formulation of Design Criteria</td>
<td>814</td>
</tr>
<tr>
<td>12.5.2</td>
<td>Design Approximations</td>
<td>819</td>
</tr>
<tr>
<td>12.5.3</td>
<td>Minimum Cost Solution</td>
<td>820</td>
</tr>
<tr>
<td>12.5.4</td>
<td>Example: Minimum Cost Design of Tensile Member</td>
<td>822</td>
</tr>
</tbody>
</table>
13.8.2 Effective Length Factor k 895
13.8.3 Effective Slenderness Ratio and Slenderness Condition 897
13.8.4 ACI Moment Magnifier Procedure for Non-Sway Frames 899
13.8.5 ACI Moment Magnifier Procedure for Sway Frames with $22 < kl_u/r < 100$ 901
13.8.6 Additional Design Checks 905
13.8.7 Design According to the PCI Committee on Columns 905
13.9 Example: Slender Column Using the PCI Approach 906
13.9.1 Non-Sway or Braced Column 906
13.9.2 Sway or Unbraced Column 911
13.10 Design Expedients and Design Aids 914
13.10.1 Preliminary Dimensioning 914
13.10.2 Design Charts: Load-Moment Interaction Diagrams 915
13.11 Biaxial Bending 924
13.12 New Design Methodology for Slender Prestressed Columns 927
13.12.1 Example: Computation of EI for a Slender PC Column Using Shuraim and Naaman’s Procedure 930
13.13 Concluding Remarks 933
References 933
Problems 936

Chapter 14 Prestressed Concrete Bridges 939
14.1 Scope 939
14.1.1 Special Design Characteristics of Bridge Members 941
14.2 Types of Bridges 941
14.2.1 Short-Span Bridges 943
14.2.2 Medium- and Long-Span Bridges Using Precast Beams 943
14.2.3 Long- and Very Long-Span Bridges 951
14.3 Rational Evolution of Bridge Form with Span Length 956
14.3.1 Evolution of Deck Section 956
14.3.2 Evolution of Support Structure and Form 957
14.4 Special Construction Techniques for Bridges 960
14.4.1 Segmental Construction and Cable Stayed Bridge Construction 960
14.4.2 Truss Bridges 964
14.4.3 Stress Ribbon or Inverted Suspension Bridges 965
14.4.4 Use of New Materials 969
14.5 Design Specifications and General Design Philosophy 972
14.5.1 Limit States 972
14.5.2 Load Combinations, Load Factors and Resistance Factors 974
14.5.3 Allowable Stresses for Service Limit States 978
14.6 Bridge Live Loads 980
14.6.1 Traffic Lane and Design (or Loading) Lane 980
14.6.2 Basic Types of Live Loads 981
14.6.3 Live Load Combinations for Design 982
14.6.4 Conditions of Application of Live Loads 983
14.6.5 Impact Factor 985
14.6.6 Multiple Presence Factor 985
14.6.7 Pedestrian Load and Sidewalk Load 985
Chapter 14

14.6.8 Deflection Limit 986
14.6.9 Other Requirements 986
14.7 Distribution of Live Loads and Beam Distribution Factors 987
14.7.1 Load Distribution Factors 987
14.7.2 Remarks Related to a Particular Bridge Deck Type 994
14.7.3 Simplified Distribution Factor by Heuristic Approach 995
14.8 Design Aids for Live Load Moments and Shears for One Loading Lane 996
14.8.1 General Rule for Concentrated Loads in Simply Supported Spans 996
14.8.2 Equations for Live Load Moments and Shears in Simply Supported Spans 997
14.8.3 Design Chart for Simply Supported Spans 1000
14.8.4 Design Charts for Live Load Moments at Supports of Continuous Beams with Equal Spans 1000
14.9 Moments and Shears in Typical Girders 1004
14.10 Example: Composite Bridge with Cast-in-Place Reinforced Concrete Slab on Top of Prestressed I-Girders 1005
14.10.1 Live Load Moments and Shears at Critical Sections 1006
14.10.2 Detailed Design of Prestressed I Beams 1008
14.11 Example: Bridge Deck with Adjacent Precast Pretensioned Box Beams 1022
14.12 Example: Negative Live Load Moment in Two-Span Continuous Bridge Deck 1028
14.13 Slabs for Bridge Decks and Solid Slab Bridges 1031
14.13.1 Equivalent Strip Width for Slab Type Bridges and Distribution Factor for Slabs 1031
14.13.2 Minimum Depth and Clear Concrete Cover 1032
14.13.3 Cast-in-Place One-Way Prestressed Slabs 1032
14.13.4 Traditional Design of Reinforced Concrete Deck Slabs 1033
14.13.5 Empirical Design of Slabs 1034
14.13.6 Temperature and Shrinkage Reinforcement 1035
14.13.7 Moments for Slabs Supported on Four Sides 1036
14.14 Example: Design of a Cast-in-Place Posttensioned Slab Bridge 1036
14.15 Precast Bridge Beams Made Continuous by a Cast-in-Place RC Slab 1040
14.15.1 Example: Prestressed Bridge Beams Made Continuous by Cast-in-Place RC Slab 1042
14.16 Design Charts for Prestressed Bridge Beams 1046
14.17 Preliminary Design Tips for Dimensioning 1047
14.18 Other Design Considerations 1049
14.19 Bridge Engineering: Looking Ahead 1050
References 1053
Problems 1055

Chapter 15 Strut-and-Tie Modeling 1061
15.1 Introduction 1061
15.1.1 Background and Motivation 1061
15.1.2 B- and D-Regions 1062
15.1.3 Trusses and Strut-and-Tie Models 1065
15.1.4 ACI Code Definition 1066
It emphasizes the fundamental concepts of analysis and design of prestressed concrete structures, providing the user with the essential knowledge and tools to deal with everyday design problems, while encouraging the necessary critical thinking to tackle more complex problems with confidence. A great text for an experienced structural engineer looking to learn about prestressed concrete design for AASHTO or ACI codes. The author does a great job of going into detail and citing how the ACI and AASHTO codes require prestressed concrete design to be performed. Included are a number of well-reasoned author recommendations which are quite helpful. A number of flowcharts are presented which do a great job of walking the reader through the design process. Short Description: This "Prestressed Concrete Analysis and Design Fundamentals" book is available in PDF Formate. Download this book, learn from this free book and enhance your skills. POWER SYSTEM ANALYSIS AND DESIGN 5th edition. Civil Discipline Specific Review for the FE EIT Exam Third Edition. By Robert H. Kim and Thomas A. Spriggs and Michael R. Lindeburg. Related posts: A Concrete Pavement Design, Construction, and Performance By Norbert Delatte Concrete Pavement Design, Construction, and Performance By Improving Concrete Quality By Karthikeyan H. Obla Improving Concrete Quality By Karthikeyan H. Obla.pdf 14.7 MiB CATHODIC Protection of Steel in Concrete By P. M. Chess CATHODIC Protection of Steel in Concrete Start by marking "Prestressed Concrete Analysis And Design: Fundamentals" as Want to Read: Want to Read saving… Want to Read. Currently Reading. Read. Prestressed Concrete A by Antoine E. Naaman. Other editions. Want to Read saving… Error rating book. Refresh and try again. Rate this book. Clear rating. We'd love your help. Let us know what’s wrong with this preview of Prestressed Concrete Analysis And Design by Antoine E. Naaman. Problem: It’s the wrong book. It’s the wrong edition. Other.